1. Express

$$
\frac{3}{2 x+3}-\frac{1}{2 x-3}+\frac{6}{4 x^{2}-9}
$$

as a single fraction in its simplest form.

$$
\begin{equation*}
y=(2 x-3)(2 x+3) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
\frac{3(2 x-3)-(2 x+3)+6}{(2 x+3)(2 x-3)}=\frac{4 x-6}{(2 x+3)(2 x-3)} & =\frac{2(x-3)}{(2 x+3)(2 x-3)} \\
& =\frac{2}{2 x+3}
\end{aligned}
$$

2. A curve C has equation $y=\mathrm{e}^{4 x}+x^{4}+8 x+5$
(a) Show that the x coordinate of any turning point of C satisfies the equation

$$
\begin{equation*}
x^{3}=-2-\mathrm{e}^{4 x} \tag{3}
\end{equation*}
$$

(b) On the axes given on page 5 , sketch, on a single diagram, the curves with equations
(i) $y=x^{3}$,
(ii) $y=-2-e^{4 x}$

On your diagram give the coordinates of the points where each curve crosses the y-axis and state the equation of any asymptotes.
(c) Explain how your diagram illustrates that the equation $x^{3}=-2-\mathrm{e}^{4 x}$ has only one root.

The iteration formula

$$
x_{n+1}=\left(-2-\mathrm{e}^{4 x_{n}}\right)^{\frac{1}{3}}, \quad x_{0}=-1
$$

can be used to find an approximate value for this root.
(d) Calculate the values of x_{1} and x_{2}, giving your answers to 5 decimal places.
(e) Hence deduce the coordinates, to 2 decimal places, of the turning point of the curve C.
a) $\frac{d u}{d x}=4 e^{4 x}+4 x^{3}+8 \quad$ IP $\frac{d u}{d x}=0$

$$
\begin{align*}
& \Leftrightarrow 4 x^{3}=-8-4 e^{4 x} \tag{2}\\
& \therefore x^{3}=-2-e^{4 x}
\end{align*}
$$

c) only one point q lutersection.

$$
\text { d) } \begin{aligned}
& x_{0}=-1 \\
& x_{1}=-1.26376 \\
& x_{2}=-1.26126
\end{aligned}
$$

$e(-1.26,-2.55)$
3. (i) (a) Show that $2 \tan x-\cot x=5 \operatorname{cosec} x$ may be written in the form

$$
a \cos ^{2} x+b \cos x+c=0
$$

stating the values of the constants a, b and c.
(b) Hence solve, for $0 \leqslant x<2 \pi$, the equation

$$
2 \tan x-\cot x=5 \operatorname{cosec} x
$$

giving your answers to 3 significant figures.
(ii) Show that

$$
\tan \theta+\cot \theta \equiv \lambda \operatorname{cosec} 2 \theta, \quad \theta \neq \frac{n \pi}{2}, \quad n \in \mathbb{Z}
$$

stating the value of the constant λ.
a) $\frac{2 \sin ^{x \sin x}}{\frac{x^{2} x}{\cos x}}=\frac{\cos x}{\sin x}=\frac{5^{x \cos x}}{\sin x} x_{x}^{\cos x}=\frac{2 \sin ^{2} x-\cos ^{2} x}{\sin x \cos x}=\frac{5 \cos x}{\sin x \cos x}$

$$
\begin{array}{r}
\therefore 2\left(1-\cos ^{2} x\right)-\cos ^{2} x=5 \cos x \Rightarrow 3 \cos ^{2} x+5 \cos x-2=0 \\
a=3 \quad b=5 \quad c=-2
\end{array}
$$

b) $(3 \cos x-1)(\cos x+2)=0 \Rightarrow \cos x=\frac{1}{3} \quad x=\cos ^{-1}\left(\frac{1}{3}\right)$

Nosolution

$$
x=\frac{1.23^{c}}{2}, 5.05^{c}
$$

$$
\text { ii) } \begin{aligned}
& \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{1}{\sin \theta \cos \theta} \\
= & \frac{2}{2 \sin \theta \cos \theta}=\frac{2}{\sin 2 \theta}=2 \operatorname{cosec}^{2} 2 \theta \quad \lambda \quad \lambda=2
\end{aligned}
$$

4. (i) Given that

$$
x=\sec ^{2} 2 y, \quad 0<y<\frac{\pi}{4}
$$

show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{4 x \sqrt{(x-1)}} \tag{4}
\end{equation*}
$$

(ii) Given that

$$
y=\left(x^{2}+x^{3}\right) \ln 2 x
$$

find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=\frac{\mathrm{e}}{2}$, giving your answer in its simplest form.
(iii) Given that

$$
\mathrm{f}(x)=\frac{3 \cos x}{(x+1)^{\frac{1}{3}}}, \quad x \neq-1
$$

show that

$$
\mathrm{f}^{\prime}(x)=\frac{\mathrm{g}(x)}{(x+1)^{\frac{4}{3}}}, \quad x \neq-1
$$

where $\mathrm{g}(x)$ is an expression to be found.

$$
\begin{aligned}
& \text { i) } \begin{aligned}
x=(\sec 2 y)^{2} & \frac{d y}{d y}=2(\sec 2 y) \times 2 \sec 2 y \tan 2 y \\
& =4 \sec ^{2} 2 y \tan 2 y \\
\begin{aligned}
& \sin ^{2} y+\cos ^{2} y \\
& \cos ^{2} y=\frac{1}{\cos ^{2} y}
\end{aligned} \quad \therefore \frac{d u}{d x} & =\frac{1}{4 \sec ^{2} 2 y \tan 2 y} \\
\tan ^{2} y+1=\sec ^{2} y & \therefore \frac{d y}{d x}
\end{aligned}=\frac{1}{4 x \sqrt{x-1}} \\
& \text { tun } y=\sqrt{\sec ^{2} y-1} \quad
\end{aligned} \begin{aligned}
& \text { ii) } u=x^{2}+x^{3} \quad v=\ln 2 x \quad \frac{d y}{d x}=\left(2 x+3 x^{2}\right) \ln 2 x+\frac{x^{2}+x^{3}}{x} \\
& u^{\prime}=2 x+3 x^{2} \quad v^{\prime}=\frac{2}{2 x}=\frac{1}{x} \quad=x(2+3 x) \ln 2 x+x+x^{2} \\
& x=\frac{e}{2} \quad \ln 2 x=\ln e=1 \quad \Rightarrow \frac{d y}{d x}=\frac{e}{2}\left(2+\frac{3 e}{2}\right)+\frac{e}{2}+\frac{e^{2}}{4} \\
&=\frac{3}{2} e+\frac{4}{4} e^{2}=\frac{3}{2} e\left(1+\frac{2}{3} e\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
u & =3 \cos x \quad v=(x+1)^{\frac{1}{3}} \\
u^{\prime} & =-3 \sin x \quad v^{\prime}=\frac{1}{3}(x+1)^{-\frac{2}{3}} \quad \frac{-3(x+1)^{\frac{1}{3}} \sin x-(x+1)^{-\frac{2}{3}} \cos x}{(x+1)^{\frac{2}{3}}} \\
& =\frac{(x+1)^{-\frac{2}{3}}[-3(x+1) \sin x-\cos x]}{(x+1)^{\frac{2}{3}}} \\
& =-\frac{3(x+1) \sin x-\cos x}{(x+1)^{\frac{4}{3}}}
\end{aligned}
$$

5. (a) Sketch the graph with equation

$$
y=|4 x-3|
$$

stating the coordinates of any points where the graph cuts or meets the axes.

Find the complete set of values of x for which
(b)

$$
\begin{equation*}
|4 x-3|>2-2 x \tag{4}
\end{equation*}
$$

(c)

$$
\begin{equation*}
|4 x-3|>\frac{3}{2}-2 x \tag{2}
\end{equation*}
$$

$$
\begin{array}{rlrl}
4 x-3 & =2-2 x & 4 x-3 & =2 x-2 \\
6 x & =5 & 2 x & =1 \\
x & =\frac{5}{6} & x & =\frac{1}{2} \\
& x<\frac{1}{2} & \text { or } x & >\frac{5}{6}
\end{array}
$$

c)

$$
\begin{aligned}
4 x-3 & =\frac{3}{2}-2 x \\
6 x & =\frac{9}{2} \\
x & =\frac{9}{12}=\frac{3}{4}
\end{aligned}
$$

6. The function f is defined by
$\mathrm{f}: x \rightarrow \mathrm{e}^{2 x}+k^{2}, \quad x \in \mathbb{R}, \quad k$ is a positive constant.
(a) State the range of f.
(b) Find f^{-1} and state its domain.

The function g is defined by

$$
\mathrm{g}: x \rightarrow \ln (2 x), \quad x>0
$$

(c) Solve the equation

$$
\mathrm{g}(x)+\mathrm{g}\left(x^{2}\right)+\mathrm{g}\left(x^{3}\right)=6
$$

giving your answer in its simplest form.
(d) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(e) Find, in terms of the constant k, the solution of the equation

$$
\begin{equation*}
\mathrm{fg}(x)=2 k^{2} \tag{2}
\end{equation*}
$$

a)

b)

$$
\begin{aligned}
x=e^{2 y}+u^{2} \Rightarrow e^{2 y}=x-u^{2} \Rightarrow & 2 y=\ln \left|x-u^{2}\right| \\
& \therefore y=\frac{1}{2} \ln \left|x-u^{2}\right|=f^{-1}(x) \\
& x>u^{2}
\end{aligned}
$$

domain
c)

$$
\begin{aligned}
g(x)+g\left(x^{2}\right)+g\left(x^{3}\right) & =\ln (2 x)+\ln \left(2 x^{2}\right)+\ln \left(2 x^{3}\right) \\
& =\ln \left(2 x \times 2 x^{2} \times 2 x^{3}\right)=\ln \left(8 x^{6}\right)=6 \\
8 x^{6}=e^{6} \therefore x & =\sqrt[6]{\frac{1}{8} e^{6}}=\frac{1}{\sqrt{2}} e
\end{aligned}
$$

d) $f g(x)=f(\ln (2 x))=e^{2 \ln (2 x)}+u^{2}=(2 x)^{2}+h^{2}=4 x^{2}+u^{2}$
e) $4 x^{2}+u^{2}=2 u^{2} \Rightarrow 4 x^{2}=u^{2} \Rightarrow x^{2}=\frac{1}{4} u^{2} \therefore x= \pm \frac{1}{2} u \therefore x=\frac{1}{2} u$

Figure 1

Figure 1 shows the curve C, with equation $y=6 \cos x+2.5 \sin x$ for $0 \leqslant x \leqslant 2 \pi$
(a) Express $6 \cos x+2.5 \sin x$ in the form $R \cos (x-\alpha)$, where R and α are constants with $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your value of α to 3 decimal places.
(b) Find the coordinates of the points on the graph where the curve C crosses the coordinate axes.

A student records the number of hours of daylight each Sunday throughout the year. She starts on the last Sunday in May with a recording of 18 hours, and continues until her final recording 52 weeks later.

She models her results with the continuous function given by

$$
H=12+6 \cos \left(\frac{2 \pi t}{52}\right)+2.5 \sin \left(\frac{2 \pi t}{52}\right), \quad 0 \leqslant t \leqslant 52
$$

where H is the number of hours of daylight and t is the number of weeks since her first recording.

Use this function to find
(c) the maximum and minimum values of H predicted by the model,
(d) the values for t when $H=16$, giving your answers to the nearest whole number.
[You must show your working. Answers based entirely on graphical or numerical methods are not acceptable.]

7a) $R \cos (x-\alpha)=R \cos x \cos \alpha+R \sin x \sin \alpha$

$$
\begin{aligned}
& 6 \cos x+2.5 \sin x \\
& \frac{R \sin \alpha}{R}=\frac{2.5}{6} \Rightarrow \tan \alpha=\frac{5}{12} \quad \alpha=0.395 \\
& R^{2}=2.5^{2}+6^{2} \quad \therefore R=6.5 \quad 6.5 \cos (x-0.395 \ldots) \\
& x=0 \quad y=6 \quad A(0,6) \quad B_{1} C \quad \longrightarrow_{0.395} \ldots \\
& B(1.97,0) \\
& C(5.11,0)
\end{aligned}
$$

c) $H=12+6.5 \cos (x-0.395 \ldots)$ when $x=\frac{2 \pi t}{52}$

$$
H_{\max }=18.5 \quad H_{\min }=5.5
$$

d)

$$
\begin{aligned}
& 16=12+6.5 \cos (x-0.395) \Rightarrow \cos (x-0.395)=\frac{4}{6.5} \\
& \therefore x-0.395=0.9079,5.375 \pi+2 \pi \mathrm{at} . \\
& \therefore x=1.3027,5.77, \ldots \\
& \frac{2 \pi t}{52}=\gamma \\
& x 52 \div 2 \pi \quad t
\end{aligned}
$$

